Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis

نویسندگان

  • Suzanna L. Prosser
  • Navdeep K. Sahota
  • Laurence Pelletier
  • Ciaran G. Morrison
  • Andrew M. Fry
چکیده

Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian RanBP1 regulates centrosome cohesion during mitosis.

The Ran GTPase plays a central function in control of nucleo-cytoplasmic transport in interphase. Mitotic roles of Ran have also been firmly established in Xenopus oocyte extracts. In this system, Ran-GTP, or the RCC1 exchange factor for Ran, drive spindle assembly by regulating the availability of 'aster-promoting activities'. In previous studies to assess whether the Ran network also influenc...

متن کامل

Nek5: a new regulator of centrosome integrity

The centrosome is the major microtubule-organising centre of an animal cell. It dictates the arrangement of a radial microtubule array in interphase and bipolar microtubule spindle in mitosis. In differentiated cells, the centrosome also promotes growth of the primary cilium, a sensory antenna-like structure that transduces external stimuli into intracellular signals. The physiological importan...

متن کامل

Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.

The centrosome duplicates during the cell cycle but functions as a single microtubule-organising centre until shortly before mitosis. This raises the question of how centrosome cohesion is maintained throughout interphase. One dynamic model proposes that parental centrioles are held together through centriole-associated, entangling filaments. Central to this model are C-Nap1, a putative centrio...

متن کامل

Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion.

Cohesins and their regulators are vital for normal chromosome cohesion and segregation. A number of cohesion proteins have also been localized to centrosomes and proposed to function there. We show that RNAi-mediated depletion of factors required for cohesion, including haspin, Sgo1 and Scc1, leads to the generation of multiple acentriolar centrosome-like foci and disruption of spindle structur...

متن کامل

Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles.

Nek2A is a cell cycle-regulated kinase of the never in mitosis A (NIMA) family that is highly enriched at the centrosome. One model for Nek2A function proposes that it regulates cohesion between the mother and daughter centriole through phosphorylation of C-Nap1, a large coiled-coil protein that localizes to centriolar ends. Phosphorylation of C-Nap1 at the G2/M transition may trigger its displ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2015